Tested {$core.config.enpl_r_start_date} hours with
out performance degradation

Crowned Technology.

Spacecraft Propulsion Systems


Space Propulsion with more than 5000 Ns

Inert non-pressurized tank during launch

Extremely high total impulse density

Significantly cheaper than Xenon


IFM Nano Thruster and IFM Nano Thruster SE

Developed for ESA Science Missions

6th Generation PPU
> 85% efficiency

Easy and fast just Plug & Play

Mature technology

The IFM Nano Thruster is a mature technology, developed under ESA contracts for 15 years. During which, more than 100 emitters have been tested as well as an ongoing lifetime test that has demonstrated more than 18.000 hours of firing without degradation of the emitter performance.

Dynamic precise thrust control

The thrust can be controlled through the electrode voltages, providing excellent controllability over the full thrust range and a low thrust noise.

Controllable specific impulse up to 5,000 seconds

Due to the efficient ionization process which allows one to ionize up to 60% of the evaporated Indium atoms, the IFM Nano Thruster can provide a higher specific impulse than any other ion propulsion system currently on the market.

Redundant neutralizer cathodes

As the IFM Nano Thruster expels an ion current of up to 3 mA, the module needs means to prevent spacecraft charging. This is achieved by the use of two cold-redundant electron sources acting as neutralizers. Such an electron source consists of a thermionic cathode type, which is heated up to 1,800 K and biased to -200 V. Once electrons have left the neutralizer, they will be pulled towards the positive potential of the ion plume. The PPU is able to measure and control this charge balancing electron current.

Safe and inert system compliant with all launcher requirements

The IFM Nano Thruster contains no moving parts and the propellant is in its solid state at room temperature. Avoiding any liquid and reactive propellants and pressurized tanks, which significantly simplifies handling, integration, and launch procedures.

Compact building blocks

The IFM Nano Thruster module is used as a compact pre-qualified building block in order to provide custom solutions at a commodity price and ultra-short lead times. Although building blocks are a complete self-contained propulsion system, the whole cluster can be operated as a single plug and play unit.

Thrust Vectoring

Using a cluster of IFM Nano Thruster modules for small satellites provides a significant thrust vectoring capability.

Datasheet PDF

The Indium FEEP Technology

Field emission is an effect which is closely tied to the presence of strong electric fields. In practice, this means that the fundamental structure on which field emission takes place is shaped like a needle, due to the field-enhancing effect at the tip. An important application of this effect is the so-called ‘Liquid Metal Ion Source’ (LMIS), because it uses the process of field emission to ionize a thin film of liquid metal covering a needle which has been biased to a few kV with respect to a counter electrode. The thusly created ions are then accelerated by the strong electric fields and can be used for ion implantation in semiconductor industry or micromachining in a focused ion beam (FIB).

This principle of generating positive ions and accelerating them by the very same field can also be used to generate thrust. When a liquid metal ion source is used in this fashion, it is termed ‘field emission electric propulsion’ (FEEP).

Due to the accuracy with which it is possible to regulate the voltage between the needle and the extraction electrode, the ensuing thrust can be controlled with unmatched accuracy. The main advantage of using FEEP thrusters lies in their capability to produce thrust from the sub-µN level to several tens of µN per emission site.

For more than 15 years, research has been carried out to use this technology for providing ultra-precise thrust in the µN-range to a spacecraft for applications related to formation flight of spacecraft.


In this environment, the proprietary porous tungsten crown emitter has been developed, which employs 28 needles for field emission. Apart from the multiple emission sites, the most important new feature is the porous tungsten matrix which enables internal flow of the liquid metal to a very sharp tip.

In the frame of the development efforts for the ESA NGGM mission, extensive testing of this technology has been performed, including the characterization of more than 100 ion emitter. An ongoing lifetime test has demonstrated more than 16.000 h of operation without performance degradation.

On mission.

Successfully demonstrated in space on a customer mission!

ENPULSION opened its semi-automated production facility beginning of June 2018 and is shipping two Thrusters per week to international customers. One of them chose the IFM Nano Thruster as the first European Thruster for a commercial constellation. Since then, several companies have chosen this technology for their satellites in the range of 3-100kg satellites.


Your customized propulsion system

Made of pre-qualified building blocks

No extra cost for customization

No additional lead times!


The modular design of the IFM Nano Thruster allows for an easy clustering to various configurations. This introduces an inherent redundancy of the system, as each module is completely independent.

The configuration of seven modules fits into a 15-inch (38 cm) separation ring, which allows for 2.4 mN of continuous thrust at 200 W and a total impulse of more than 35 kNs with 1.75 kg of propellant.

Clustering of the porous tungsten crown emitter can be
achieved either on sub-system level or on crown level.
Clustering Individual IFM Nano Thrusters

Clustering Individual Modules is an advantage for spacecrafts that are smaller than ~150kg.

Clustering Porous Tungsten Crown Emitter

The IFM Micro Thruster is currently being commercialized with the support of Airbus DS, CNRS and EPFL. A fully qualified product will be available in 2019.


A highly versatile modular concept

The modular approach of the IFM Nano Thruster allows for a large number of possible mission advantages.


With multiple modules, one can have the opportunity to perform accurate attitude control.


Mission extension ranging from weeks to years, especially in low altitude orbits with increased resolution for earth remote sensing such as imaging applications


Gain flexibility in the choice of a suitable launch opportunity, including a cheap ISS deployment



Controlling inter-satellite distance in the orbital plane


Efficiently deorbit a small satellite from a higher orbit to comply with international Space-Debris Regulations or perform an EOL maneuver putting it in a graveyard orbit


The thruster uses liquid metal as the propellant. The propellant is in its solid state at room temperature. Avoiding any liquid and reactive propellants as well as pressurized tanks, significantly simplifies handling, integration, and launch procedures.

We have chosen the Enpulsion thruster. It is the only one that will let us pack enough delta V, in the small package of our 12U space craft, to carry out the mission. The mission is to break orbit and explore an asteroid.

Order now
AUSTRIA +43 2622 4170121 USA +1 (408) 599 3030