

NANO R³

FIELD EMISSION ELECTRIC PROPULSION (FEEP)

The ENPULSION NANO R^3 is the next-generation FEEP system based on the flight-proven success story that is the ENPULSION NANO (formerly: IFM Nano Thruster). Incorporation of lessons learned from a large number of acceptance test campaigns and inorbit performance verifications led into an updated electronics design, thermostructural concept, and software functionality. The resulting product – the ENPULSION NANO R^3 – features increased reliability, radiation tolerance, and environmental resilience.

•

RAD-TOLERANT ELECTRONICS

All EEE components of the *ENPULSION NANO R*³ are procured in **lot-controlled batches**. Selected sets of these batches are subjected to radiation testing, so that each thruster can be traced back to a fully representative qualification model. EEE components were selected and integrated to be more tolerant to TID and SEE.

FLIGHT HERITAGE

The ENPULSION NANO R³ is an updated version of the space proven ENPULSION NANO with more than 50 units in space*. It is directly building on its heritage, leveraging the proven design and component selection.

*as per December 2020

PROTECTIVE CASING

The thruster is assembled into a protective casing that **shields the electronics** from the hazardous space radiation environment, **facilitates handling** during integration, and allows **side mounting**.

VERSATILE PERFORMANCE

Thrust can be controlled through the electrode voltages, providing **excellent controllability** over the full thrust range and a low thrust noise. Due to the efficient ionization process, the *ENPULSION NANO R*³ can provide a higher specific impulse than any other ion propulsion system currently on the market.

SAFE AND INERT SYSTEM

The ENPULSION NANO R^3 contains **no moving parts** and the indium propellant is in its solid state at room temperature. Avoiding any liquid and reactive propellants as well as pressurized tanks significantly simplifies handling, integration, and launch procedures.

1 www.enpulsion.com

NANO R³



PROPERTIES AND PERFORMANCE

While the required power to operate the *ENPULSION NANO* R^3 starts at around 10-15 W, at higher power levels one can choose between high thrust and high specific impulse operation. The *ENPULSION NANO* R^3 can operate at an $I_{\rm sp}$ range of 2,000 to 6,000 s.

At any given thrust point, higher $I_{\rm sp}$ operation will increase the total impulse, while also increasing the power demand. The thruster can be operated along the full dynamic range throughout the mission. This means that high $I_{\rm sp}$ and low $I_{\rm sp}$ manoeuvres can be included in a mission planning as well as high thrust orbit manoeuvres and low thrust precision control manoeuvres.

DYNAMIC THRUST RANGE	10 ΤΟ 350 μΝ
NOMINAL THRUST	350 μΝ
SPECIFIC IMPULSE	2,000 TO 6,000 s
PROPELLANT MASS	220 g
TOTAL IMPULSE	MORE THAN 5,000 Ns
POWER AT NOMINAL THRUST	45 W INCL. NEUTRALIZER
OUTSIDE DIMENSIONS	98.0 x 99.0 x 95.3 mm
MASS (DRY / WET)	<1180 / <1400 g
TOTAL SYSTEM POWER	10 – 45 W
HOT STANDBY POWER	5 W
COMMAND INTERFACE	RS422 / RS485
TEMPERATURE ENVELOPE	-40 TO 95°C
(NON-OPERATIONAL)	
TEMPERATURE ENVELOPE	-20 TO 40 °C
(OPERATIONAL)	
SUPPLY VOLTAGE	12 V, 28 V, OTHER VOLTAGES
	UPON REQUEST

Depending on available power, the user can choose from any operational point - data shown corresponds to 12 V configuration

2 www.enpulsion.com